Федеральное государственное бюджетное учреждение

"Северо-Западный окружной научно-клинический центр имени Л.Г.Соколова

Федерального медико-биологического агентства"


Санкт-Петербург








Скорая помощь круглосуточно:
+7(812)703-03-03

Единая информационно-справочная служба
+7(812)363-11-22
ПН-ПТ: с 8 до 20 | СБ: с 9 до 17












Приемное отделение
(круглосуточно)









 

 
   
 

Поиск
Общее
Скорая помощь
Валдайский многопрофильный медицинский центр ФГБУ СЗОНКЦ им. Л.Г. Соколова ФМБА России
Филиал № 2. Поликлиника на ул.Красина
Центр промышленной и морской медицины ФМБА России
Приемное отделение
Физиотерапия
Служба крови
Судебно-медицинская экспертиза
Судебная психолого-педагогическая экспертиза
Психофизиологическая лаборатория
Поликлиника
О поликлинике
Акушерство и гинекология
Аллергология и иммунология
Амбулаторная хирургия
Андрология
Гастроэнтерология
Дерматовенерология
Дневной стационар
Кабинет инфекционных болезней и иммунопрофилактики
Кабинет лазерной и радиоволновой медицины
Кабинет сосудистой хирургии и эстетической флебологии
Кабинет спортивной медицины
Кардиология
Неврология
Онкология
Оториноларингология
Офтальмологический кабинет
Педиатрическое отделение
Проктология
Процедурный кабинет
Пластическая хирургия
Пульмонология
Промышленная поликлиника № 1
Промышленная поликлиника № 2
Промышленная поликлиника № 3
Промышленная поликлиника № 5
Промышленная поликлиника № 6
Ревматология
Терапевтическое отделение № 1
Терапевтическое отделение
Традиционная медицина
Травматология и ортопедия
Урология
Хирургия
Хирургический дневной стационар
Хирургическое отделение
Эндокринология
Диагностика
Клинико-диагностическая лаборатория
Компьютерная томография
Магнитно-резонансная томография
Отдел лучевой диагностики
Патолого-анатомическое отделение (лаборатория диагностики онкологических заболеваний)
Радиоизотопная диагностика
Рентгенодиагностика
Ультразвуковая диагностика
Функциональная диагностика
Эндоскопия
Стационар
Анестезиология-реанимация
Гинекология
Гипербарическая оксигенация (барокамера)
Дерматология
Кардиология № 1
Кардиология № 2
Кардиохирургия
Кардиотелеметрия
Кабинет рентгенангиографии
Неврология
Нейрохирургическая служба
Онкогинекология
Онкология
Оториноларингология
Офтальмология
Профилактическая медицина и реабилитация
Реанимация и интенсивная терапия
Рентгенхирургические методы диагностики и лечения
Терапия
Травматология
Урология
Хирургия
Экстракорпоральная гемокоррекция и фотогемотерапия
Центры
Атеросклероза и нарушений липидного обмена
Аудиологии, слухопротезирования и слухоречевой реабилитации
Бариатрическая хирургия
Высоких технологий в УЗД
Галотерапии
Гастроэнтерологический
Гериатрии
Герниологии
Здоровья
Косметологический кабинет
Лазерных технологий
Медицинского сопровождения семьи
Остеопороза (кабинет денситометрии)
Проктологии
Психосоматической медицины
Респираторной терапии и сомнологии
Сосудистой хирургии
Торакальной хирургии
Травматологическая служба
Фониатрии
Хирургии мягких тканей
Челюстно-лицевой хирургии
ЭКО
Эндокринной хирургии
VITA VASORUM
Профосмотры и медкомиссии
Центр профпатологии
Профпатологическое отделение стационара
Медицинские комиссии
Поликлиническое отделение профпатологии
Профосмотры

Оставьте Ваш номер и сотрудник информационной службы свяжется с Вами: Спасибо! Сотрудник единой информационно-справочной службы перезвонит Вам в рабочее время (в будний день с 8:00 до 20:00, в субботу с 09:00 до 18:00, воскресенье - выходной).

Единый телефонный номер



Скорая помощь

Российские ученые предложили новые материалы для высокоточных детекторов

26.08.2022 Ученые СГУ разработали новые модели двумерных гибридных материалов для создания высокоточных детекторов УФ-излучения длительной эксплуатации. Эти детекторы могут использоваться для анализа биологических и химических веществ, мониторинга окружающей среды, астрономических исследований, а также организации закрытой связи между искусственными спутниками. Результаты исследования опубликованы в журнале Materials.

По словам сотрудников Саратовского национального исследовательского государственного университета (СГУ) имени Н.Г. Чернышевского, сегодня для конструирования электронных устройств с заданными характеристиками, в частности, полевых транзисторов и фотодиодов, успешно применяется сочетание 2D материалов атомарной толщины с различным типом проводимости (металл, полупроводник, диэлектрик) в виде ван-дер-ваальсовых гетероструктур.

Ван-дер-ваальсовые вертикальные гетероструктуры представляют собой гибридные материалы, составленные из чередующихся слоев различных кристаллов аналогично деталям конструктора Lego. Слои в составе таких гетероструктур удерживаются вместе силами ван-дер-Ваальса (силы межатомного взаимодействия).

Ученые СГУ исследовали возможность реализации контакта металл-полупроводник на базе новых конфигураций ван-дер-Ваальсовых гетероструктур, образованных 2D-монослоем борофена с металлической проводимостью в сочетании с графеноподобными полупроводниковыми монослоями нитридом галлия (GaN) и оксидом цинка (ZnO).

Они построили атомные модели новых ван-дер-Ваальсовых гетероструктур и спрогнозировали их структурные, электронные и электрические свойства с помощью методов компьютерного моделирования.

"Мы показали, что предложенные конфигурации гетероструктур термодинамически стабильны и характеризуются отсутствием в электронной структуре энергетической щели между валентной зоной и зоной проводимости, что говорит об их высокой способности проводить электрический ток. Кроме того, мы обнаружили, что эти гетероструктуры демонстрируют хорошую устойчивость значений тока к изменению температуры при малых напряжениях", – рассказал доцент кафедры радиотехники и электродинамики СГУ Михаил Слепченков.

По его словам, на основе предлагаемых ван-дер-ваальсовых гетероструктур в перспективе могут быть разработаны новые типы полевых вертикальных транзисторов с барьером Шоттки (потенциальный барьер, появляющийся в приконтактном слое полупроводника, граничащего с металлом) и высокоточные детекторы УФ-излучения.

Такие детекторы востребованы во многих прикладных сферах, например, для проведения спектрального анализа биологических и химических веществ, мониторинга окружающей среды, астрономических исследований, а также организации закрытой связи между искусственными спутниками.

Использование предлагаемых конфигураций ван-дер-Ваальсовых гетероструктур, по мнению исследователей, позволит обеспечить требуемые токовые характеристики устройств и сохранить их структурную целостность при длительном режиме эксплуатации.

Преимущества разработки, по словам ученых, заключаются в более высоких, по сравнению с аналогами, значениях тока. Значения тока при одних и тех же напряжениях в разработанных учеными СГУ гетероструктурах борофен/GaN и борофен/ZnO, используемых в качестве контакта Шоттки, измеряются десятками микроампер, в то время как в уже известных ван-дер-ваальсовых гетероструктурах, например борофен/MoS2, не превышают нескольких наноампер.

Кроме того, по словам исследователей, используемая в других работах гетероструктура борофен/MoS2 по энергии связи уступает разработанной учеными СГУ гетероструктуре борофен/GaN в два раза, а гетероструктуре борофен/ZnO – в три раза.

Чтобы эффективно применять новые гетероструктуры в устройствах нано- и оптоэлектроники, ученые планируют выявить оптимальные способы настройки их ключевых электрофизических параметров, которые можно реализовать в практическом эксперименте.
Направление, в рамках которого проводится данное исследование, входит в стратегический проект Саратовского государственного университета "Инфокоммуникационные технологии и элементная база терагерцовой микро- и наноэлектроники ("ИКТ – Электроника")" программы "Приоритет-2030".

Источник: РИА Новости

 


Возврат к списку


Пациентам
Сотрудники
О нас
Личный кабинет
Вакансии
Канал 122
Наука
Дополнительное образование
Интересное